Comprehensive screening of octopus amphiphiles as DNA activators in lipid bilayers: implications on transport, sensing and cellular uptake.
نویسندگان
چکیده
Dynamic octopus amphiphiles contain one charged "head," here a guanidinium cation, together several hydrophobic "tails" (or "tentacles") that can be attached and exchanged in situ by reversible hydrazone formation. Quite surprisingly, their ability to activate DNA as transporters in lipid bilayer membranes was found to increase with the number of tails (up to four) as well as with their length (up to eight carbons). Both encouraged and puzzled by these results, we decided that a comprehensive screening of octopus amphiphiles with regard to number (from one to six) and length (from three to eighteen carbons) of their tails would be appropriate at this point. For this purpose, we here report the synthesis of cationic hexahydrazide peptide dendrons together with that of aldehydes with long, saturated, unsaturated and branched hydrophobic tails. Comprehensive screening of the completed collection of tails and heads reveals that the ability of octopus amphiphiles to activate DNA transporters shifts with increasing number of tails to decreasing length of the tails. Moreover, cis-alkenyl and branched alkyl tails are more active than their linear analogs, branched aromatic tails are best. These overall very meaningful trends for octopus amphiphiles will be of importance for sensing applications and fragrant cellular uptake.
منابع مشابه
Amphiphilic dynamic NDI and PDI probes: imaging microdomains in giant unilamellar vesicles.
Dynamic amphiphiles provide access to transmembrane ion transport, differential sensing and cellular uptake. In this report, we introduce dynamic amphiphiles with fluorescent tails. Core-substituted naphthalenediimides (cNDIs) and perylenediimides (cPDIs) are tested. Whereas the latter suffer from poor partitioning, dynamic cNDI amphiphiles are found to be purifiable by RP-HPLC, to partition se...
متن کاملSurface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection
Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...
متن کاملSurface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection
Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...
متن کاملUltrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor
An important issue in nanopore sensing is to construct stable and versatile sensors that can discriminate analytes with minute differences. Here we report a means of creating nanopores that comprise ultrashort single-walled carbon nanotubes inserted into a lipid bilayer. We investigate the ion transport and DNA translocation through single-walled carbon nanotube nanopores and find that our resu...
متن کاملSeasonal Variations of Fat and Fatty Acid Composition in Muscle Tissues of Mediterranean Octopuses
The effects of seasons on lipid and fatty acid profiles of muscle types (mantle and arm) of Mediterranean octopuses (common octopus-Octopus vulgaris and musky octopus-Eledone moschata) were investigated. The results showed that lipid levels ranged from 0.75% to 1.60% in both muscle types of octopuses which were considered as lean. Lipid levels in mantle tissues of both octopus species w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Organic & biomolecular chemistry
دوره 9 8 شماره
صفحات -
تاریخ انتشار 2011